Origin Matters: Differences in Embryonic Tissue Origin and Wnt Signaling Determine the Osteogenic Potential and Healing Capacity of Frontal and Parietal Calvarial Bones
نویسندگان
چکیده
Calvarial bones arise from two embryonic tissues, namely, the neural crest and the mesoderm. In this study we have addressed the important question of whether disparate embryonic tissue origins impart variable osteogenic potential and regenerative capacity to calvarial bones, as well as what the underlying molecular mechanism(s). Thus, by performing in vitro and in vivo studies, we have investigated whether differences exist between neural crest-derived frontal and paraxial mesodermal-derived parietal bone. Of interest, our data indicate that calvarial bone osteoblasts of neural crest origin have superior potential for osteogenic differentiation. Furthermore, neural crest-derived frontal bone displays a superior capacity to undergo osseous healing compared with calvarial bone of paraxial mesoderm origin. Our study identified both in vitro and in vivo enhanced endogenous canonical Wnt signaling in frontal bone compared with parietal bone. In addition, we demonstrate that constitutive activation of canonical Wnt signaling in paraxial mesodermal-derived parietal osteoblasts mimics the osteogenic potential of frontal osteoblasts, whereas knockdown of canonical Wnt signaling dramatically impairs the greater osteogenic potential of neural crest-derived frontal osteoblasts. Moreover, fibroblast growth factor 2 (FGF-2) treatment induces phosphorylation of GSK-3beta and increases the nuclear levels of beta-catenin in osteoblasts, suggesting that enhanced activation of Wnt signaling might be mediated by FGF. Taken together, our data provide compelling evidence that indeed embryonic tissue origin makes a difference and that active canonical Wnt signaling plays a major role in contributing to the superior intrinsic osteogenic potential and tissue regeneration observed in neural crest-derived frontal bone.
منابع مشابه
Enhanced Activation of Canonical Wnt Signaling Confers Mesoderm-Derived Parietal Bone with Similar Osteogenic and Skeletal Healing Capacity to Neural Crest-Derived Frontal Bone
Bone formation and skeletal repair are dynamic processes involving a fine-tuned balance between osteoblast proliferation and differentiation orchestrated by multiple signaling pathways. Canonical Wnt (cWnt) signaling is known to playing a key role in these processes. In the current study, using a transgenic mouse model with targeted disruption of axin2, a negative regulator of cWnt signaling, w...
متن کاملIntegration of Multiple Signaling Pathways Determines Differences in the Osteogenic Potential and Tissue Regeneration of Neural Crest-Derived and Mesoderm-Derived Calvarial Bones
The mammalian skull vault, a product of a unique and tightly regulated evolutionary process, in which components of disparate embryonic origin are integrated, is an elegant model with which to study osteoblast biology. Our laboratory has demonstrated that this distinct embryonic origin of frontal and parietal bones confer differences in embryonic and postnatal osteogenic potential and skeletal ...
متن کاملActivation of FGF Signaling Mediates Proliferative and Osteogenic Differences between Neural Crest Derived Frontal and Mesoderm Parietal Derived Bone
BACKGROUND As a culmination of efforts over the last years, our knowledge of the embryonic origins of the mammalian frontal and parietal cranial bones is unambiguous. Progenitor cells that subsequently give rise to frontal bone are of neural crest origin, while parietal bone progenitors arise from paraxial mesoderm. Given the unique qualities of neural crest cells and the clear delineation of t...
متن کاملDifferential FGF ligands and FGF receptors expression pattern in frontal and parietal calvarial bones.
The mammalian skull vault consists mainly of 5 flat bones, the paired frontals and parietals, and the unpaired interparietal. All of these bones are formed by intramembranous ossification within a layer of mesenchyme, the skeletogenic membrane, located between the dermal mesenchyme and the meninges surrounding the brain. While the frontal bones are of neural crest in origin, the parietal bones ...
متن کاملGene Expression Profile Analysis during Mouse Tooth Development
Introduction: Complex molecular pathways involve in development of different tissues such as teeth. Differential gene expression patterns during teeth development generates different tooth types. Teeth development results from interactions between oral epithelium and underlying ectomesenchyme cells with neural crest origin. Teeth development are regulated by different signaling networks. In thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 25 شماره
صفحات -
تاریخ انتشار 2010